Genetic and developmental control of nuclear accumulation of COP1, a repressor of photomorphogenesis in Arabidopsis.

نویسندگان

  • A G von Arnim
  • M T Osterlund
  • S F Kwok
  • X W Deng
چکیده

Using a beta-glucuronidase (GUS) reporter-COP1 fusion transgene, it was shown previously that Arabidopsis COP1 acts within the nucleus as a repressor of seedling photomorphogenic development and that high inactivation of COP1 was accompanied by a reduction of COP1 nuclear abundance (A.G. von Arnim, X.-W. Deng [1994] Cell 79: 1035-1045). Here we report that the GUS-COP1 fusion transgene can completely rescue the defect of cop1 mutations and thus is fully functional during seedling development. The kinetics of GUS-COP1 relocalization in a cop1 null mutant background during dark/light transitions imply that the regulation of the functional nuclear COP1 level plays a role in stably maintaining a committed seedling's developmental fate rather than in causing such a commitment. Analysis of GUS-COP1 cellular localization in mutant hypocotyls of all pleiotropic COP/DET/FUS loci revealed that nuclear localization of GUS-COP1 was diminished under both dark and light conditions in all mutants tested, whereas nuclear localization was not affected in the less pleiotropic cop4 mutant. Using both the brassinosteroid-deficient mutant det2 and brassinosteroid treatment of wild-type seedlings, we have demonstrated that brassinosteroid does not control the hypocotyl cell elongation through regulation nuclear localization of COP1. The growth regulator cytokinin, which also dramatically reduced hypocotyl cell elongation in the absence of light, did not prevent GUS-COP1 nuclear localization in dark-grown seedlings. Our results suggest that all of the previously characterized pleiotropic COP/DET/FUS loci are required for the proper nuclear localization of the COP1 protein in the dark, whereas the less pleiotropic COP/DET loci or plant regulators tested are likely to act either downstream of COP1 or by independent pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Arabidopsis repressor of light signaling, COP1, is regulated by nuclear exclusion: mutational analysis by bioluminescence resonance energy transfer.

Bioluminescence resonance energy transfer (BRET) between Renilla luciferase and yellow fluorescent protein has been adapted to serve as a real-time reporter on protein-protein interactions in live plant cells by using the Arabidopsis Constitutive photomorphogenesis 1 (COP1) protein as a model system. COP1 is a repressor of light signal transduction that functions as part of a nuclear E3 ubiquit...

متن کامل

Functional dissection of Arabidopsis COP1 reveals specific roles of its three structural modules in light control of seedling development.

Arabidopsis COP1 acts as a repressor of photomorphogenesis in darkness, and light stimuli abrogate the repressive ability and nuclear abundance of COP1. COP1 has three known structural modules: an N-terminal RING-finger, followed by a predicted coiled-coil and C-terminal WD-40 repeats. A systematic study was undertaken to dissect the functional roles of these three COP1 domains in light control...

متن کامل

Genetic and Developmental Control of Nuclear Accumulation of COPI , a Repressor of Photomorphogenesis in Arabidopsis ’

Using a P-glucuronidase (CUS) reporter-COPl fusion transgene, it was shown previously that Arabidopsis COPl acts within the nucleus as a repressor of seedling photomorphogenic development and that light inactivation of COPl was accompanied by a reduction of COPl nuclear abundance (A.C. von Arnim, X.-W. Deng [I9941 Cell 79: 1035-1045). Here we report that the GUS-COPl fusion transgene can comple...

متن کامل

The RING-Finger E3 Ubiquitin Ligase COP1 SUPPRESSOR1 Negatively Regulates COP1 Abundance in Maintaining COP1 Homeostasis in Dark-Grown Arabidopsis Seedlings.

CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) functions as an E3 ubiquitin ligase in both plants and animals. In dark-grown Arabidopsis thaliana seedlings, COP1 targets photomorphogenesis-promoting factors for degradation to repress photomorphogenesis. Little is known, however, about how COP1 itself is regulated. Here, we identify COP1 SUPPRESSOR1 (CSU1), a RING-finger E3 ubiquitin ligase, as a regulat...

متن کامل

Short communication: the N-terminal fragment of Arabidopsis photomorphogenic repressor COP1 maintains partial function and acts in a concentration-dependent manner.

Arabidopsis seedlings exhibit distinct developmental patterns according to their light environment: photomorphogenesis in the light and etiolation or skotomorphogenesis in darkness. COP1 acts within the nucleus to repress photomorphogenesis in darkness, while light depletes COP1 from nucleus and abrogates this repression. COP1 contains three structural modules: a RING finger followed by a coile...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 114 3  شماره 

صفحات  -

تاریخ انتشار 1997